Skip to content
Snippets Groups Projects
timsort.h 13.8 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Taken from https://github.com/swenson/sort
     * Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
     * Removed all code unrelated to Timsort and made minor adjustments for
     * cross-platform compatibility.
    
     * The MIT License (MIT)
     *
     * Copyright (c) 2010-2017 Christopher Swenson.
     * Copyright (c) 2012 Vojtech Fried.
     * Copyright (c) 2012 Google Inc. All Rights Reserved.
     *
     * Permission is hereby granted, free of charge, to any person obtaining a
     * copy of this software and associated documentation files (the "Software"),
     * to deal in the Software without restriction, including without limitation
     * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     * and/or sell copies of the Software, and to permit persons to whom the
     * Software is furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     * DEALINGS IN THE SOFTWARE.
     */
    
    
    #include <stdlib.h>
    #include <stdio.h>
    #include <string.h>
    
    #ifdef HAVE_STDINT_H
    
    #include <stdint.h>
    
    #elif defined(_WIN32)
    
    typedef unsigned __int64 uint64_t;
    #endif
    
    
    #ifndef SORT_NAME
    #error "Must declare SORT_NAME"
    #endif
    
    #ifndef SORT_TYPE
    #error "Must declare SORT_TYPE"
    #endif
    
    #ifndef SORT_CMP
    #define SORT_CMP(x, y)  ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
    #endif
    
    
    #ifndef TIM_SORT_STACK_SIZE
    #define TIM_SORT_STACK_SIZE 128
    #endif
    
    
    #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
    
    
    /* Common, type-agnostic functions and constants that we don't want to declare twice. */
    
    #ifndef SORT_COMMON_H
    #define SORT_COMMON_H
    
    #ifndef MAX
    #define MAX(x,y) (((x) > (y) ? (x) : (y)))
    #endif
    
    #ifndef MIN
    #define MIN(x,y) (((x) < (y) ? (x) : (y)))
    #endif
    
    static int compute_minrun(const uint64_t);
    
    #ifndef CLZ
    
    #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
    
    #define CLZ __builtin_clzll
    #else
    
    static int clzll(uint64_t);
    
    /* adapted from Hacker's Delight */
    static int clzll(uint64_t x) {
      int n;
    
      if (x == 0) {
        return 64;
      }
    
      n = 0;
    
      if (x <= 0x00000000FFFFFFFFL) {
        n = n + 32;
        x = x << 32;
      }
    
      if (x <= 0x0000FFFFFFFFFFFFL) {
        n = n + 16;
        x = x << 16;
      }
    
      if (x <= 0x00FFFFFFFFFFFFFFL) {
        n = n + 8;
        x = x << 8;
      }
    
      if (x <= 0x0FFFFFFFFFFFFFFFL) {
        n = n + 4;
        x = x << 4;
      }
    
      if (x <= 0x3FFFFFFFFFFFFFFFL) {
        n = n + 2;
        x = x << 2;
      }
    
      if (x <= 0x7FFFFFFFFFFFFFFFL) {
        n = n + 1;
      }
    
      return n;
    }
    
    #define CLZ clzll
    #endif
    #endif
    
    static __inline int compute_minrun(const uint64_t size) {
      const int top_bit = 64 - CLZ(size);
      const int shift = MAX(top_bit, 6) - 6;
      const int minrun = size >> shift;
      const uint64_t mask = (1ULL << shift) - 1;
    
      if (mask & size) {
        return minrun + 1;
      }
    
      return minrun;
    }
    
    #endif /* SORT_COMMON_H */
    
    
    #define SORT_CONCAT(x, y) x ## _ ## y
    #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
    #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
    
    
    #define BINARY_INSERTION_FIND          SORT_MAKE_STR(binary_insertion_find)
    #define BINARY_INSERTION_SORT_START    SORT_MAKE_STR(binary_insertion_sort_start)
    #define BINARY_INSERTION_SORT          SORT_MAKE_STR(binary_insertion_sort)
    #define REVERSE_ELEMENTS               SORT_MAKE_STR(reverse_elements)
    #define COUNT_RUN                      SORT_MAKE_STR(count_run)
    #define CHECK_INVARIANT                SORT_MAKE_STR(check_invariant)
    #define TIM_SORT                       SORT_MAKE_STR(tim_sort)
    #define TIM_SORT_RESIZE                SORT_MAKE_STR(tim_sort_resize)
    #define TIM_SORT_MERGE                 SORT_MAKE_STR(tim_sort_merge)
    #define TIM_SORT_COLLAPSE              SORT_MAKE_STR(tim_sort_collapse)
    
    #ifndef MAX
    #define MAX(x,y) (((x) > (y) ? (x) : (y)))
    #endif
    #ifndef MIN
    #define MIN(x,y) (((x) < (y) ? (x) : (y)))
    #endif
    
      size_t start;
      size_t length;
    
    } TIM_SORT_RUN_T;
    
    
    void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
    void TIM_SORT(SORT_TYPE *dst, const size_t size);
    
    
    /* Function used to do a binary search for binary insertion sort */
    
    static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
        const size_t size) {
      size_t l, c, r;
    
      SORT_TYPE cx;
      l = 0;
      r = size - 1;
      c = r >> 1;
    
    
      /* check for out of bounds at the beginning. */
      if (SORT_CMP(x, dst[0]) < 0) {
    
      } else if (SORT_CMP(x, dst[r]) > 0) {
        return r;
    
        const int val = SORT_CMP(x, cx);
    
    
        if (val < 0) {
          if (c - l <= 1) {
            return c;
          }
    
    
        } else { /* allow = for stability. The binary search favors the right. */
          if (r - c <= 1) {
            return c + 1;
          }
    
          l = c;
    
        c = l + ((r - l) >> 1);
        cx = dst[c];
      }
    }
    
    /* Binary insertion sort, but knowing that the first "start" entries are sorted.  Used in timsort. */
    
    static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
      size_t i;
    
      for (i = start; i < size; i++) {
        size_t j;
    
        SORT_TYPE x;
    
        /* If this entry is already correct, just move along */
    
        if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
          continue;
        }
    
    
        /* Else we need to find the right place, shift everything over, and squeeze in */
        x = dst[i];
        location = BINARY_INSERTION_FIND(dst, x, i);
    
    
        for (j = i - 1; j >= location; j--) {
    
          dst[j + 1] = dst[j];
    
    
          if (j == 0) { /* check edge case because j is unsigned */
            break;
          }
    
        dst[location] = x;
      }
    }
    
    /* Binary insertion sort */
    
    void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
      /* don't bother sorting an array of size <= 1 */
      if (size <= 1) {
        return;
      }
    
    
      BINARY_INSERTION_SORT_START(dst, 1, size);
    }
    
    /* timsort implementation, based on timsort.txt */
    
    
    static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
      while (1) {
        if (start >= end) {
          return;
        }
    
    
        SORT_SWAP(dst[start], dst[end]);
        start++;
        end--;
      }
    }
    
    
    static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
      size_t curr;
    
      if (size - start == 1) {
        return 1;
      }
    
      if (start >= size - 2) {
        if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
    
          SORT_SWAP(dst[size - 2], dst[size - 1]);
    
      if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
    
        /* increasing run */
    
        while (1) {
          if (curr == size - 1) {
            break;
          }
    
          if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
            break;
          }
    
    
        return curr - start;
    
        /* decreasing run */
    
        while (1) {
          if (curr == size - 1) {
            break;
          }
    
          if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
            break;
          }
    
    
        /* reverse in-place */
        REVERSE_ELEMENTS(dst, start, curr - 1);
        return curr - start;
      }
    }
    
    
    static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
      size_t A, B, C;
    
      if (stack_curr < 2) {
    
    
      if (stack_curr == 2) {
        const size_t A1 = stack[stack_curr - 2].length;
        const size_t B1 = stack[stack_curr - 1].length;
    
        if (A1 <= B1) {
          return 0;
        }
    
        return 1;
      }
    
    
      A = stack[stack_curr - 3].length;
      B = stack[stack_curr - 2].length;
      C = stack[stack_curr - 1].length;
    
    
      if ((A <= B + C) || (B <= C)) {
        return 0;
      }
    
    
      return 1;
    }
    
    typedef struct {
      size_t alloc;
      SORT_TYPE *storage;
    } TEMP_STORAGE_T;
    
    
    static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
      if (store->alloc < new_size) {
        SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
    
        if (tempstore == NULL) {
          fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
                  (unsigned long)(sizeof(SORT_TYPE) * new_size));
    
        store->storage = tempstore;
        store->alloc = new_size;
      }
    }
    
    
    static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
                               TEMP_STORAGE_T *store) {
      const size_t A = stack[stack_curr - 2].length;
      const size_t B = stack[stack_curr - 1].length;
      const size_t curr = stack[stack_curr - 2].start;
    
      SORT_TYPE *storage;
    
      size_t i, j, k;
    
      TIM_SORT_RESIZE(store, MIN(A, B));
      storage = store->storage;
    
      /* left merge */
    
        memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
        i = 0;
        j = curr + A;
    
    
        for (k = curr; k < curr + A + B; k++) {
          if ((i < A) && (j < curr + A + B)) {
            if (SORT_CMP(storage[i], dst[j]) <= 0) {
    
              dst[k] = storage[i++];
    
              dst[k] = dst[j++];
    
            }
          } else if (i < A) {
    
            dst[k] = storage[i++];
    
      } else {
        /* right merge */
    
        memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
    
        i = B;
        j = curr + A;
        k = curr + A + B;
    
        while (k > curr) {
          k--;
    
          if ((i > 0) && (j > curr)) {
            if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
              dst[k] = dst[--j];
            } else {
              dst[k] = storage[--i];
            }
          } else if (i > 0) {
            dst[k] = storage[--i];
          } else {
            break;
    
    static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
                                 TEMP_STORAGE_T *store, const size_t size) {
    
        size_t A, B, C, D;
    
        int ABC, BCD, CD;
    
        /* if the stack only has one thing on it, we are done with the collapse */
    
        /* if this is the last merge, just do it */
    
        if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
    
          TIM_SORT_MERGE(dst, stack, stack_curr, store);
          stack[0].length += stack[1].length;
          stack_curr--;
          break;
        }
        /* check if the invariant is off for a stack of 2 elements */
    
        else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
    
          TIM_SORT_MERGE(dst, stack, stack_curr, store);
          stack[0].length += stack[1].length;
          stack_curr--;
          break;
    
        } else if (stack_curr == 2) {
          break;
    
        B = stack[stack_curr - 3].length;
        C = stack[stack_curr - 2].length;
        D = stack[stack_curr - 1].length;
    
        if (stack_curr >= 4) {
          A = stack[stack_curr - 4].length;
          ABC = (A <= B + C);
        } else {
          ABC = 0;
        }
    
        BCD = (B <= C + D) || ABC;
        CD = (C <= D);
    
        /* Both invariants are good */
        if (!BCD && !CD) {
          break;
    
    
        /* left merge */
        if (BCD && !CD) {
          TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
          stack[stack_curr - 3].length += stack[stack_curr - 2].length;
          stack[stack_curr - 2] = stack[stack_curr - 1];
          stack_curr--;
        } else {
          /* right merge */
    
          TIM_SORT_MERGE(dst, stack, stack_curr, store);
          stack[stack_curr - 2].length += stack[stack_curr - 1].length;
          stack_curr--;
        }
      }
    
    static __inline int PUSH_NEXT(SORT_TYPE *dst,
                                  const size_t size,
                                  TEMP_STORAGE_T *store,
                                  const size_t minrun,
                                  TIM_SORT_RUN_T *run_stack,
                                  size_t *stack_curr,
                                  size_t *curr) {
      size_t len = COUNT_RUN(dst, *curr, size);
      size_t run = minrun;
    
      if (run > size - *curr) {
        run = size - *curr;
      }
    
      if (run > len) {
        BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
        len = run;
      }
    
      run_stack[*stack_curr].start = *curr;
      run_stack[*stack_curr].length = len;
      (*stack_curr)++;
      *curr += len;
    
      if (*curr == size) {
        /* finish up */
        while (*stack_curr > 1) {
          TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
          run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
          (*stack_curr)--;
        }
    
        if (store->storage != NULL) {
          free(store->storage);
          store->storage = NULL;
        }
    
        return 0;
      }
    
      return 1;
    }
    
    void TIM_SORT(SORT_TYPE *dst, const size_t size) {
      size_t minrun;
    
      TEMP_STORAGE_T _store, *store;
    
      TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
      size_t stack_curr = 0;
      size_t curr = 0;
    
      /* don't bother sorting an array of size 1 */
      if (size <= 1) {
        return;
      }
    
    
      if (size < 64) {
    
        BINARY_INSERTION_SORT(dst, size);
        return;
      }
    
      /* compute the minimum run length */
      minrun = compute_minrun(size);
      /* temporary storage for merges */
      store = &_store;
      store->alloc = 0;
      store->storage = NULL;
    
    
      if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
        return;
      }
    
      if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
        return;
      }
    
      if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
        return;
      }
    
      while (1) {
        if (!CHECK_INVARIANT(run_stack, stack_curr)) {
    
          stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
          continue;
        }
    
    
        if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
          return;
        }
    
      }
    }
    
    #undef SORT_CONCAT
    #undef SORT_MAKE_STR1
    #undef SORT_MAKE_STR
    #undef SORT_NAME
    #undef SORT_TYPE
    #undef SORT_CMP
    #undef TEMP_STORAGE_T
    #undef TIM_SORT_RUN_T
    #undef PUSH_NEXT
    #undef SORT_SWAP
    #undef SORT_CONCAT
    #undef SORT_MAKE_STR1
    #undef SORT_MAKE_STR
    #undef BINARY_INSERTION_FIND
    #undef BINARY_INSERTION_SORT_START
    #undef BINARY_INSERTION_SORT
    #undef REVERSE_ELEMENTS
    #undef COUNT_RUN
    #undef TIM_SORT
    #undef TIM_SORT_RESIZE
    #undef TIM_SORT_COLLAPSE
    #undef TIM_SORT_RUN_T
    #undef TEMP_STORAGE_T